Recursive determination of the sum-of-divisors function

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterating the Sum-of-Divisors Function

1991 Mathematics Subject Classi cation: 11A25, 11Y70 Let 0(n) = n and m(n) = ( m 1(n)), where m 1 and is the sum-of-divisors function. We say that n is (m; k)perfect if m(n) = kn. We have tabulated all (2; k)-perfect numbers up to 109 and all (3; k)and (4; k)-perfect numbers up to 2 108. These tables have suggested several conjectures, some of which we prove here. We ask in particular: For any ...

متن کامل

determination of maximal singularity free zones in the workspace of parallel manipulator

due to the limiting workspace of parallel manipulator and regarding to finding the trajectory planning of singularity free at workspace is difficult, so finding a best solution that can develop a technique to determine the singularity-free zones in the workspace of parallel manipulators is highly important. in this thesis a simple and new technique are presented to determine the maximal singula...

15 صفحه اول

The range of the sum-of-proper-divisors function

Answering a question of Erdős, we show that a positive proportion of even numbers are in the form s(n), where s(n) = σ(n) − n, the sum of proper divisors of n.

متن کامل

Remarks on fibers of the sum-of-divisors function

Let σ denote the usual sum-of-divisors function. We show that every positive real number can be approximated arbitrarily closely by a fraction m/n with σ(m) = σ(n). This answers in the affirmative a question of Erdős. We also show that for almost all of the elements v of σ(N), the members of the fiber σ−1(v) all share the same largest prime factor. We describe an application of the second resul...

متن کامل

Some Problems of Erdős on the Sum-of-divisors Function

Let σ(n) denote the sum of all of the positive divisors of n, and let s(n) = σ(n)− n denote the sum of the proper divisors of n. The functions σ(·) and s(·) were favorite subjects of investigation by the late Paul Erdős. Here we revisit three themes from Erdős’s work on these functions. First, we improve the upper and lower bounds for the counting function of numbers n with n deficient but s(n)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1979

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1979-0516458-2